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Abstract

The search for periodic components in a time series is an important aspect
of data analysis. In most cases, Schuster’s periodograms or Lomb-Scargle
periodograms are used depending on the homogeneity of the distribution of
the original data over time. Calculating spectra is not a computationally
intensive task; however, difficulties arise when processing large quantities of
time series data and assessing the existence of periodic components within
them. For preliminary analysis of large data sets, a convolutional neural
network simulating the operation of Schuster’s periodogram is suitable.
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Introduction

This work represents our initial step towards accelerating the primary
processing of signals in the task of exoplanet detection.
We are going to use an improved version of the algorithm in the problem
described above.
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First try

Initially, we considered single-layer neural networks that processed one pair
of Fourier transform components. Later, they served as the first layer.

(a) 2 neurons (b) 4 neurons (c) 8 neurons

(d) 16 neurons (e) 32 neurons (f) 64 neurons
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First try

The network response that you could see on the previous slide was formed
from responses of individual neurons of this type:

(a) (b) (c)
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Problem

Problem:

The ”ribbing” in the block response decreases with increasing number
of neurons, but does not disappear.

Possible solutions:

Further increase in the number of neurons

Filling the weights before training in a special way
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Solution

Based on a previously trained block of 128 neurons, the weights of the new
block were uniformly distributed. The blocks have been transformed and
now look like this.

(a) 16 neurons (b) 32 neurons (c) 64 neurons

Figure: Response graph of a neuron blocks to a pair of real and imaginary parts of
a signal sample

The ribbing has noticeably smoothed out or disappeared completely.
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Neural network

A two-layer perceptron was designed to determine the existence of a
sinusoidal component in a signal consisting of 128 samples by means of its
Fourier transform. Each layer is defined by the following formula:

xi+1
k = f

((
n∑

j=1
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jx

i
j

)
+ bik

)
, (1)

where f – layer’s activation function (sigmoid were used), wi
j – weight, bik –

bias.
Training time series were generated for network training and subsequent
testing. Bayes factor, as described in the paper [1], was used to assess
prediction accuracy.
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Bayes factor. Implementation of assessment

A million (Nc = 1000000) triplets of signal parameters (Θ) are generated
for each time series with noise. The following quantities are considered:

EM2 =

Nc∑
i=1

e−
∑len(x)

k=1
((x[k]−fsin(T [k],Θ[i]))2)/2

((2π)len(x)/2))
,

where fsin – the function that generates a sinusoidal value with parameters
Θ[i] and time T [k].

EM1 =
e−

∑len(x)
k=1

((x[k]2/2

((2π)len(x)/2))

Bayes factor (R) and probability of signal identification (P ):

R = EM2/EM1 ; P = R(1 −R)
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Results and mistakes

The accuracy reached only 90%
for series with high amplitudes

Increasing accuracy required
increasing the number of
neurons, which in turn resulted
in numerous ”extra” connections
in the network that needed to be
optimized through training,
consequently increasing the
amount of required data

It was decided to restructure the
network to reduce the number of
neural connections while
improving accuracy. In this case,
the best alternative was to
introduce convolutional layers
into the structure.

The ratio of the model probability of the
existence of a signal with the theoretically
possible
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Convolutional neuron network

Replacing regular layers with convolutional layers reduces the number of
trainable connections and allows for an increase in the number of neurons
in each layer. To optimize training, weights from pre-trained models’ layers
were used. The network structure now consists of 2 convolutional layers
processing a pair of Fourier components (Figure 3 (a).), a technical
flattening layer, and 2 regular layers responsible for finding the maximum
and outputting the result as the probability of a sinusoidal component in
the signal. The neural network was implemented using Python 3.8, and the
network structures were taken from the module keras. Training took place
over 300 epochs, with the adadelta optimizer, accuracy metric, and binary
cross-entropy loss function. The choice of optimizer was based on its precise
and rapid weight minimization, as determined through empirical testing.
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Tests and results

Tests were conducted on
synthesized datasets with
approximately N ∼ 106 − 107.

The amount of data containing a
sinusoidal component and data
consisting solely of noise was
equal. This volume allowed
achieving a signal detection
accuracy of 99% of the
theoretical maximum with a
small number of trainable
network neurons.

Additionally, no overfitting issue
affecting the network’s response
was observed.

The ratio of the model probability of the
existence of a signal with the theoretically
possible
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Conclusion

This work presented a brief description of a convolutional neural network
model solving the signal detection problem. The described structure is
currently not well-suited for real data; hence work is underway to expand
its functionality, specifically introducing weights to time series and
processing non-uniform series (simulating the operation of Lomb-Scargle
periodograms). The synthesis of training datasets will also be revised for
more efficient training. These steps will enable obtaining results from real
data.
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